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Application of Chemometrics to Modeling
Produced Water Contamination

J. McFarlane
Separations and Materials Research Group, Nuclear Science and
Technology Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA

Abstract: A partial least-squares statistical model was prepared to describe the con-
tamination of produced water by soluble organic compounds. The model incorporated
predictor variables used in earlier characterization studies: pH, temperature, pressure,
salinity, water-to-oil ratio, and origin of the crude. Response variables included total
extractable material and concentrations of aliphatic, aromatic, and polar organic
molecules. The model was used to predict the uptake of water-soluble organics
under a variety of conditions. The model will be applied to the prediction of hydro-
carbon contamination of water produced in offshore drilling.

INTRODUCTION

Oil and gas production usually involves pumping large amounts of contami-
nated water along with the hydrocarbon phase. This high volume waste stream,
on the order of a trillion gallons of water a year, is subject to National
Pollution Discharge Elimination System permits. For Gulf of Mexico wells,
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the Environmental Protection Agency (EPA) limit on oil and grease content in
produced water is a daily maximum of 42mg-L ™' and a monthly average of
no more than 29mg-L™~" (1). After bulk separation from the hydrocarbon
phase, the produced water contains organics, the concentrations of which
have been measured on the order of a few ppm (2). The solubilities of individ-
ual components depend on the physical and chemical characteristics of the
soluble organic molecules and insoluble colloidal particles (3). There is a
variety of methods for removal of trace amounts of hydrocarbon; but the
physical methods (i.e., adsorption and filtration) are subject to fouling, and
the chemical methods can be compromised by the chemistry of the oil (4).
Hence, it is important to know a priori the speciation and amounts of
organic contaminants in the waste-water stream.

THEORY AND METHOD

The use of statistical analysis for model development has broad application
throughout the sciences and social sciences. A statistical approach is particu-
larly advantageous in the consideration of practical problems, when data come
from a wide range of sources and comprise various forms, which do not lend
themselves to a simple theoretical treatment. The chemometric approach has a
number of advantages over phenomenological modeling as applied to environ-
mental problems. Restrictions on the data set can be lax, allowing qualitative,
as well as quantitative data to be used in the model. Depending on the adopted
approach, predictor variables do not have to be strictly independent, as corre-
lations will be eliminated in the transformation to factors represented by the
score matrices. With some algorithms, even data sets with missing infor-
mation can be accommodated, as long as sufficient independent data exist
to determine all of the factors required to describe the system. In general,
one factor (latent variable) is derived for each response variable in the
model. Varmuzza gives an overview of chemometrics (5), which includes a
useful description of the differences between methods such as multiple
linear regression (MLR) and principal component analysis (PCA). Examples
of the application of statistics to environmental problems are numerous.
A couple of examples include Barbieri and coworkers who used PCA to
investigate the pattern of freshwater contamination in Italian estuaries (6)
and investigators at Oak Ridge National Laboratory who employed PCA to
assess emissions from diesel fuels (7, 8).

Partial least-squares (PLS) analysis was used in this project; a method
incorporating aspects of both MLR and PCA (9). In PLS, the covariance
with respect to the response variable, y, is maximized, which allows for the
calculation of correlation coefficients and also maximizes the variance
between the predictor and response variables. PLS has been used widely in
analytical chemistry applications, such as for calibration of spectra used in
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the determination of Pu(IIl) (10). A series of papers has been published by
Brandvik and Daling on the application of a PLS algorithm to optimize the
choice of which dispersants to use in the event of an oil spill at sea (11-13).

The goal of PLS analysis is to develop a linear model for the prediction of
a response variable, y, based on a independent factors. During this discussion,
it may be helpful to refer to Fig. 1. The factors are derived from the decompo-
sition of an nxm matrix of predictor data, X, into an nxa score matrix (7) and
an mxa loading matrix (P). The effective rank, a, of X, may be smaller than
the actual number of variables, m, because of interdependencies between
measured variables. The X scores, t;, are made to be orthogonal by multiplying
through by weight vectors, w,,, and the residuals, E, are small. Similarly, the
nxp Y matrix of response variables is recast in the form of an nxa score matrix
and a pxa loading matrix (Q), with residuals in F.

In practical terms, to construct the model, predictor and response data
from a “training” data set are cast in matrices, X and Y, respectively, after
transformation into a mean-centered, variance-scaled form. Following the
NIPALS algorithm (14), model development involves a stepwise simul-
taneous breakdown of both matrices in terms of score vectors (¢, and uy),
weight vectors (wy,), and scalar regression parameters (b;,) to give an alterna-
tive description of the data in terms of a set of orthogonal eigenvectors for
each factor, h.

Predictions are based on calculating a new set of latent variables (#,) for a
new set of predictor data, X, that is first loaded into the residual matrix, E.
Each term of the score vectors, t;;, and the loading vector, g;;, from the

7

t,=X-w, ¥, =bnzfm G E,=E, —1,-p,

Figure 1. Schematic of partial least-squares model development and application (see
text for explanation of symbols and methodology).
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model, is used in combination with the regression parameter to determine
a new response vector Y;,. Meanwhile, the residual matrix is recalculated
using the score vector, t,, and the loading vector, p,. If more than one
response variable is involved, the process will repeat with the “new” X
matrix, Ej,.

Evaluation of the model can be performed using standard statistical
methods. Plots of scores from the input (#,) and response (i) matrices allow
assessment of the fit (or regression parameters, b;). Correlations between
input or response factors can be observed by plots of #;, vs. #;..5, and u, vs.
u; . Examples of the correlation plots are given in Fig. 2: #; vs. u;, and 1,
vs. t,. Numerical evaluations are also possible, through calculation of sums
of squares (15), the F-test (16), and the PRESS algorithm (17), where each
set of data in the training set is sequentially replaced followed by a comparison
of the model parameters.

Programming of the PLS analysis was performed using the MAPLE 7
environment for symbolic mathematics (18) and was run on both a PC
(Windows 2000, Windows XP) and an Apple G4 Powerbook (OS 9).
Appendix A contains the MAPLE code used for model development.

RESULTS AND DISCUSSION

The PLS analysis was applied to the characterization data taken at ORNL (3).
The X and Y matrices are given in (Table 1), showing which variables were
chosen for the training data set before transformation to mean-centered and
variance-scaled. Table 2 gives the loading and weight matrices derived
from PLS analysis, as well as the regression coefficients for each of the
resulting four factors. The model was then used to predict solubility as a
function of the variables characterized for the produced water/crude oil
contacts carried out earlier at ORNL. Results of the calculation are
presented in the graphs shown in (Figs. 3-5) for pH, temperature, and
salinity, respectively. The model predictions are shown as a dashed line on
each graph. Also included are the experimental data for total extractable
material according to EPA methodology (19).

In agreement with the experimental results, trends were observed with pH
and temperature (Figs. 3 and 4), respectively. Salinity gave a poor correlation
although a slight decrease in solubility was seen with both the total extractable
material and the polar fraction (Fig. 5). As expected, a slight increase in solu-
bility was observed in the organic fraction as a function of temperature. The
trend in solubility with applied pressure was also explored using the PLS
method. Because essentially no trends could be derived for the model, the
results from this analysis are not presented in this paper. The solubility data
used for the training set did not show a pressure dependence because the oil
samples used in the experiments on which the PLS model was based were
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Figure 2. Examples of plots showing correlations between score eigenvectors. A:
Regression between predictor and response variables. B: Correlation between first
two orthogonal predictor factors.

degassed before they were shipped to Oak Ridge National Laboratory
(ORNL). Only organics with very low ambient vapor pressures were sampled.

Predictions for solubility as a function of pH are presented in Fig. 3 as the
dashed straight line. The solid line is a pseudo-titration curve arising from
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Table 1a. Input variables for construction of X matrix

Volume ratio
Temperature (°C) pH [CI7] (mgL™h Pressure (bar) H,0: (H,0 + oil)

25 7.00 40,600 1.0 0.80
25 9.03 65,000 1.0 0.80
25 5.98 65,000 1.0 0.80
25 7.00 65,000 1.0 0.67
25 4.73 65,000 1.0 0.80
75 7.00 65,000 1.0 0.80
25 7.00 114,500 1.0 0.80
25 7.00 65,000 1.0 0.80
50 7.00 65,000 1.0 0.80
25 8.09 65,000 1.0 0.80
25 7.00 65,000 1.0 0.50
25 7.00 65,000 1.0 0.20
25 7.00 65,000 6.9 0.80
25 7.00 65,000 17.0 0.80
25 7.00 65,000 29.3 0.80
25 7.00 65,000 1.0 0.80

Table 1b. Response variables (mg-L ") for construction of Y matrix

Total extractable Aliphatic Aromatic Polar
material compounds compounds compounds
12.0 0.066 0.030 4.60
28.6 0.066 0.280 6.94
11.7 0.005 0.040 5.30
11.6 0.060 0.030 6.94
11.9 0.039 0.070 3.10
24.8 0.066 0.330 12.6
14.5 0.253 0.050 6.10
21.0 0.016 0.110 2.35
21.9 0.216 0.080 6.70
23.5 0.010 0.110 279
30.6 0.050 0.305 5.80
30.0 0.051 0.240 6.94
47.5 0.103 0.313 3.43
6.1 0.015 0.024 6.25
4.1 0.020 0.090 2.08

39 0.016 0.166 4.07
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Table 2. Calculated loading, and weight matrices and regression coefficients

P
0.473 —0.152 0.096 0.684
0.567 0.200 0.533 0.047
0.145 —0.869 —0.225 —0.020
—0.575 0.085 0.130 0.728
-0.319 —0.416 0.800 0.023
q
0.545 0.235 —0.316 —0.312
0.363 —0.919 —0.237 0.177
0.582 0.316 —0.298 0.933
0.483 0.025 0.869 —0.043
w
0.496 —0.126 —0.036 0.646
0.615 0.206 0.534 0.087
0.170 —0.886 —0.240 0.006
—0.490 0.093 —0.034 0.762
—0.342 —0.387 0.837 0.005
b
0.906 0.641 0.278 0.245
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Figure 3. Predicted solubility as a function of pH.
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Figure 4. Solubility (mg/L) as a function of temperature (°C). Data for total extrac-
table material (squares) and polar organics (triangles) are superimposed on PLS predic-
tions of solubility. A slight increase in solubility was observed over the temperature
range 25-75°C.
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Figure 5. Solubility (mg/L) as a function of chloride ion concentration (mg/L). Data
for total extractable material (squares) and polar organics (triangles) are superimposed
on PLS predictions of solubility. In these experiments, the concentrations of aromatic
and aliphatic compounds were at or below the detection limit.
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thermodynamic calculations on a produced water brine—hydrocarbon system
(20). Although the statistical model does not reproduce the “s”’-shaped curve
seen in the thermodynamic model, the analysis was performed without any
assumptions concerning the chemistry of the water or the oil. The thermodyn-
amic model, however, required the input of mole fractions of specific
compounds into the system, and the phase behavior was calculated based on
these predetermined variables. Use of a more sophisticated input variable in
the statistical model, such as degree of dissociation rather than pH, should
give results that more closely reproduce the pseudo-titration curve seen in
the data. Unlike a thermodynamic formulation, however, a statistical model
cannot be used to calculate physical properties a priori. For instance, differen-
tiation of the Gibbs free energy with respect to solute mole fraction will give
the upper and lower consulate temperatures of a mixture, but a statistical
model gives no such insight into phase separation behavior.

CONCLUSIONS

Based on partial least squares analysis, a statistical model was constructed
based on data for organic contamination of produced water. When used for
predictions, the PLS model successfully reproduced trends in agreement
with the data, showing an increase in solubility with pH and with temperature.
The advantage of the PLS model is that field data can be easily incorporated
into the model. For this reason, it will likely be the favored approach for
implementation outside the laboratory. The usefulness of the model will be
improved by eliminating apparent weaknesses in the model, such as the impo-
sition of a linear pH dependence where a nonlinear trend was observed in the
data. In PLS, this can be achieved by careful selection of predictor variables
that incorporate nonlinear effects, such as fraction dissociated rather than
pH. Refinements such as these will require incorporation of a larger and
more representative data set in model development.

APPENDIX A

Maple 7 Program for Partial Least-Squares Applied to Produced Water Data
Joanna McFarlane August 29, 2003

Introduction

The object is to build a model that predicts an outcome, Y, based on a
predictor, X. This program was developed following the NIPALS algorithm
outlined in Geladi, P. and Kowalski, B.R., “Partial Least-Squares Regression:
A Tutorial,” Analytica Chimica Acta 185, 1-17 (1986).
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Tested with data from Geladi, P. and Kowalski, B.R., “An Example of 2-Block
Predictive Partial Least-Squares Regression with Simulated Data”, Analytica
Chimica Acta 185, 19-32 (1986).

> restart:with(stats):with(linalg):with(plots):

Defining the Data

The training data—or that used to develop the model—is typed or read into the
program. It is converted to “mean-centred” and “variance-scaled” form. In this
case, 9 separate samples (or objects) were used for model development. The X
data are the measured variables (predictors) and the Y data are the concen-
trations (outcomes or responses).

>

X: = [[25,7,40638,1,0.8],[25,9.03,65000,1,0.8],[25,5.98,65000,1,0.8],
[25,7,65000,1,0.671,[25,4.73,65000,1,0.8],[75,7,65000,1,0.81,[25,7,
114500,1,0.8],[25,7,65000,1,0.8],[50,7,65000,1,0.8],[25,8.09,65000,1,0.8],
[25,7,65000,1,0.5],[25,7,65000,1,0.2],[25,7,65000,6.9,0.8],[25,7,65000,17,
0.8],[25,7,65000,29.3,0.8],[25,7,65000,1,0.8]]:array(X);

Y: = [[12,0.066,0.03,4.6],[28.6,.066,0.28,6.94],[11.7,0.005,0.04,5.3],[11.6,
0.062,0.03,6.94],[11.9,0.039,0.07,3.1],[24.8,.066,0.33,12.6],[14.5,0.253,
0.05,6.11,[21,0.016,0.11,2.351,[21.9,0.216,0.08,6.7],[23.5,0.01,0.11,27.9],
[30.6,0.05,0.305,5.8],[30,0.051,0.24,6.94],[47.5,0.103,0.313,3.43],[6.1,
0.015,0.024,6.25],[4.1,0.02,0.09,2.08],[3.9,0.016,0.166,4.07]]:

array(Y);

num_samples: = rowdim(array(X));

num_ind_var: = coldim(array(X));

num_dep_var: = coldim(array(Y));

Procedures from J.A.Rafter, M.L.Abell and J.P.Braselton— “Statistics with
Maple,” Academic Press, Amsterdam, 2003.

> Columns: = proc(data::list,cols::list)
if nops(cols) = 1 then
[seq(seq(data[i,j],j = cols),i = 1.nops(data))];

else

[seq([seq(data[i,j],j = cols)],i = l.nops(data))];fi;
end:

> ColumnToList: = proc(data::list,cols::list)

local a;
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if nops(cols) = 1 then
if type(cols[],range) then
a: = [seq(seq(data[i,j],i = 1.nops(data)),j = cols)];
convert(linalg[transpose](a),listlist);

else
[seq(seq(data[i,j],i = 1.nops(data)),j = cols)];
fi;
else
[seq([seq(datali,j],i = 1.nops(data))],j = cols)];
fi;

end:

Conversion of the data to be mean-centered and variance-scaled
> =" X1l: =[]
for i from 1 to num_ind_var do s:= Columns(X,[i]);
s1: = describe[mean](s);
s2: = describe[standarddeviation[1]](s);
X1: = [op(X1),(evalf(map(x — > (x —s1)/s2,s))];
od:
X2: = ColumnToList(X1,[1.num_samples]):
E: = array(X2);
s:=‘s:Yl: =[]
for i from 1 to num_dep_var do
s: = Columns(Y,[i]);
sl: = describe[mean](s);
s2: = describe[standarddeviation[1]](s);
Y1: = [op(Y]),(evalf(map(x — > (x — s1)/s2,s)))];
od:
Y2: = ColumnToList(Y1,[1.num_samples]):
F: = array(Y2);

Model Building

Initialization
> check: = 1:tstart: = ColumnToList(X2,[1]);

ustart: = ColumnToList(Y2,[1]);Xm: = matrix(X2):Ym: = matrix(Y?2):
pm: = matrix(5,1,[1,1,1,1,1]):gm: = matrix(4,1,[1,1,1,1]):

wm: = matrix(5,1,[1,1,1,1,1]):

tm: = matrix(16,1,{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]):
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um: = matrix(16,1,[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]):
bm: = [];j: = j’:
> for j from 1 to num_dep_var do

while check > 0.1 do

X block
u_ip: = 1/innerprod(ustart,ustart);
w: = multiply(ustart,Xm);
wold: = scalarmul(w,u_ip);
worm: = 1/norm(wold,2);
wnew: = scalarmul(wold,worm);
w_ip: = 1/innerprod(wnew,wnew);
t1: = multiply(Xm,wnew);
t2: = scalarmul(tl,w_ip);

Y block
t_ip: = 1/innerprod(t2,t2);
q: = multiply(t2,Ym);
gold: = scalarmul(q,t_ip);
gorm: = 1 /norm(qold,2);
gnew: = scalarmul(qold,qorm);
q_ip: = 1/innerprod(qnew,qnew);
ul: = multiply(Ym,qnew);
u2: = scalarmul(ul,q_ip);

Check convergence
check: = norm(t2 — tstart);
ustart: = u2;tstart: = convert(t2,list);

od;

Calculate X-loadings and rescale scores and weights
print(“*****CONVERGENCE******** CONVERGENCE******);
t_ip: = 1/innerprod(t2,t2);

p: = multiply(t2,Xm);

pold: = scalarmul(p,t_ip):

porm: = 1 /norm(pold,2):

pnew: = scalarmul(pold,porm);

tnew: = scalarmul(t2,1/(porm));

wnew: = scalarmul(wnew,1/(porm));

pm: = concat(pm,pnew):tm: = concat(tm,tnew):
wm: = concat(wm,wnew):qm: = concat(qm,qnew):
um: = concat(um,u2):
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Calculation of regression coefficient
b: = multiply(u2,t2)*t_ip;bm: = [op(bm),b]:

Calculation of residual matrices
Xdiff: = multiply(tnew,transpose(pnew)):
Xm2: = matadd(Xm,Xdiff,1, — 1):Xm: = matrix(Xm?2);
Ydiff: = multiply(tnew,transpose(qnew)):
Ym2: = matadd(Ym,Ydiff,1, — b):Ym: = matrix(Ym2);

Check for convergence. Recalculated u for computation, Need to multiply by
—1 to reproduce results in paper.

if (j < num_dep_var) then ustart: = col(Ym,j + 1);

ustart: = scalarmul(ustart, — 1);

check: = 1:fi;

od:

Output files (loadings p, q and weights w are used for prediction, bare
regression coefficients, scores t and u are used for assessment).

>pm: = delcols(pm,1.1);qm: = delcols(qm,1.1);tm: = delcols(tm,1.1);
wm: = delcols(wm,1.1);um: = delcols(um,1.1);

Model Testing
Sum of Squares, Plots

Sum of squares are first calculated for samples, and then calculated for each
column of the X matrix and Y matrix to show the degree of minimization
of the residuals. If the sum of squares is large for a particular factor, this
means that it did not play a great role in the model as it was not well
minimized during the computation. The overall sum of squares for X and Y
show how well the model converged for the X and Y data respectively.

> Xm3: = convert(Xm,listlist):SSx_rows: = 0:i: = ‘1’:

> for i from 1 to num_samples do
sum_squares_sample[i]: = describe[sumdata[2]](Xm3[i]);
SSx_rows: = SSx_rows + sum_squares_sample[i]:

od;
> i: = ‘1":SSx_cols: = 0:

> for i from 1 to num_ind_var do
sum_squares_list: = convert(col(Xm,i), ‘list’):
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sum_squares_x[i]: = describe[sumdata[2]](sum_squares_list);
SSx_cols: = SSx_cols + sum_squares_x[i]:
od;
> i = ‘1":SSy: = 0:
> for i from 1 to num_dep_var do
sum_squares_list: = convert(col(Ym,i), list’):
sum_squares_y[i]: = describe[sumdata[2]](sum_squares_list);
SSy: = SSy + sum_squares_y[i];
od;
Plots are a valuable tool to visualize the goodness of fit. Regression plots of y
versus x give an idea of how much the response variable depends onthe input
variable. Mapping of t scores indicates correlations between predictor
variables, u scores indicates correlations between response variables.

> 1=y ="
> for i from 1 to (num_dep_var — 1) do
tlplot: = col(tm,i):ts1: = cat(“t”,i):
t2plot: = col(tm,i + 1):ts2: = cat(“t”,i + 1):
setl: = [seq([tlplot[j],t2plot[j]],j = 1.num_samples)]:
Tplot: = plot(setl, — 5.5, — 5.5, style = point,symbol = box,
axes = boxed, color = black, labels = [ts1,ts2]): Tplot;
ulplot: = col(um,i):usl: = cat(“u”,i):
u2plot: = col(um,i + 1):us2: = cat(“v”,i+ 1):
set2: = [seq([ulplot[i],u2plot[i]],i = 1.num_samples)]:
Uplot: = plot(setl, — 5.5, — 5.5, style = point, symbol = box,
axes = boxed, color = black,labels = [us],us2]): Uplot;
od;
Plots of t versus u gives an idea of how good the regression is.
>i=9g=9"
> for i from 1 to num_dep_var do
tlplot: = col(tm,i):ts1: = cat(“t”,i):
ulplot: = col(um,i):usl: = cat(“v”,i):
setl: = [seq([tlplot[j],ulplot[j]],j = 1.num_samples)]:
Tplot: = plot(setl, — 5.5, — 5.5, style = point, symbol = box,
axes = boxed,color = black,labels = [ts1,us1]):Tplot;
od;

Prediction
In this section, one can calculate a new Y matrix, given an input X matrix. In

this example, there is a single X vector. The input data is scaled according to
the mean and variance calculated in model development.
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> XP: = [25,7,65000,1,.6]:

Changing input values to mean-centred, variance-scaled values.
> s = ‘§:XPl: =[]
> for i from 1 to num_ind_var do
s: = Columns(X,[i]);
s1: = describe[mean](s);
s2: = describe[standarddeviation[1]](s);
XP1: = [op(XP1),(evalf(map(x — > (x — s1)/s2,XP[i))];

od:
> XP1;

Decomposing the X block into score matrix (vector) t, using weights matrix w.
> TP: = multiply(XP1,wm);TP1: = multiply(TP,transpose(pm));
> XP2: = matadd(XP1,TP1,1, — 1);

Building up Y block using u scores
> UP: = multiply(TP,transpose(qm));
> 1= 9:YP: = [i]:
> for i from 1 to num_dep_var do
YP: = [op(YP),scalarmul(UP,bm[i])[i]];

od:
> YP: = [op(2.num_dep_var + 1,YP)];

Regenerate “physical” concentrations.
> s = §:YPL: =[]
> for i from 1 to num_dep_var do
s: = Columns(Y,[i]);
sl: = describe[mean](s);
s2: = describe[standarddeviation[1]](s);
YP1: = [op(YP1),(evalf(map(x — > sl + (s2*x),YP[i])))];

od:
YPI1;
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