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Application of Chemometrics to Modeling
Produced Water Contamination

J. McFarlane

Separations and Materials Research Group, Nuclear Science and

Technology Division, Oak Ridge National Laboratory,

Oak Ridge, TN, USA

Abstract: A partial least-squares statistical model was prepared to describe the con-

tamination of produced water by soluble organic compounds. The model incorporated

predictor variables used in earlier characterization studies: pH, temperature, pressure,

salinity, water-to-oil ratio, and origin of the crude. Response variables included total

extractable material and concentrations of aliphatic, aromatic, and polar organic

molecules. The model was used to predict the uptake of water-soluble organics

under a variety of conditions. The model will be applied to the prediction of hydro-

carbon contamination of water produced in offshore drilling.

INTRODUCTION

Oil and gas production usually involves pumping large amounts of contami-

nated water along with the hydrocarbon phase. This high volume waste stream,

on the order of a trillion gallons of water a year, is subject to National

Pollution Discharge Elimination System permits. For Gulf of Mexico wells,
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the Environmental Protection Agency (EPA) limit on oil and grease content in

produced water is a daily maximum of 42 mg . L21 and a monthly average of

no more than 29 mg . L21 (1). After bulk separation from the hydrocarbon

phase, the produced water contains organics, the concentrations of which

have been measured on the order of a few ppm (2). The solubilities of individ-

ual components depend on the physical and chemical characteristics of the

soluble organic molecules and insoluble colloidal particles (3). There is a

variety of methods for removal of trace amounts of hydrocarbon; but the

physical methods (i.e., adsorption and filtration) are subject to fouling, and

the chemical methods can be compromised by the chemistry of the oil (4).

Hence, it is important to know a priori the speciation and amounts of

organic contaminants in the waste-water stream.

THEORY AND METHOD

The use of statistical analysis for model development has broad application

throughout the sciences and social sciences. A statistical approach is particu-

larly advantageous in the consideration of practical problems, when data come

from a wide range of sources and comprise various forms, which do not lend

themselves to a simple theoretical treatment. The chemometric approach has a

number of advantages over phenomenological modeling as applied to environ-

mental problems. Restrictions on the data set can be lax, allowing qualitative,

as well as quantitative data to be used in the model. Depending on the adopted

approach, predictor variables do not have to be strictly independent, as corre-

lations will be eliminated in the transformation to factors represented by the

score matrices. With some algorithms, even data sets with missing infor-

mation can be accommodated, as long as sufficient independent data exist

to determine all of the factors required to describe the system. In general,

one factor (latent variable) is derived for each response variable in the

model. Varmuzza gives an overview of chemometrics (5), which includes a

useful description of the differences between methods such as multiple

linear regression (MLR) and principal component analysis (PCA). Examples

of the application of statistics to environmental problems are numerous.

A couple of examples include Barbieri and coworkers who used PCA to

investigate the pattern of freshwater contamination in Italian estuaries (6)

and investigators at Oak Ridge National Laboratory who employed PCA to

assess emissions from diesel fuels (7, 8).

Partial least-squares (PLS) analysis was used in this project; a method

incorporating aspects of both MLR and PCA (9). In PLS, the covariance

with respect to the response variable, y, is maximized, which allows for the

calculation of correlation coefficients and also maximizes the variance

between the predictor and response variables. PLS has been used widely in

analytical chemistry applications, such as for calibration of spectra used in
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the determination of Pu(III) (10). A series of papers has been published by

Brandvik and Daling on the application of a PLS algorithm to optimize the

choice of which dispersants to use in the event of an oil spill at sea (11–13).

The goal of PLS analysis is to develop a linear model for the prediction of

a response variable, y, based on a independent factors. During this discussion,

it may be helpful to refer to Fig. 1. The factors are derived from the decompo-

sition of an nxm matrix of predictor data, X, into an nxa score matrix (T) and

an mxa loading matrix (P). The effective rank, a, of X, may be smaller than

the actual number of variables, m, because of interdependencies between

measured variables. The X scores, th, are made to be orthogonal by multiplying

through by weight vectors, wh, and the residuals, E, are small. Similarly, the

nxp Y matrix of response variables is recast in the form of an nxa score matrix

and a pxa loading matrix (Q), with residuals in F.

In practical terms, to construct the model, predictor and response data

from a “training” data set are cast in matrices, X and Y, respectively, after

transformation into a mean-centered, variance-scaled form. Following the

NIPALS algorithm (14), model development involves a stepwise simul-

taneous breakdown of both matrices in terms of score vectors (th and uh),

weight vectors (wh), and scalar regression parameters (bh) to give an alterna-

tive description of the data in terms of a set of orthogonal eigenvectors for

each factor, h.

Predictions are based on calculating a new set of latent variables (th) for a

new set of predictor data, X, that is first loaded into the residual matrix, E.

Each term of the score vectors, thi, and the loading vector, qhi, from the

Figure 1. Schematic of partial least-squares model development and application (see

text for explanation of symbols and methodology).
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model, is used in combination with the regression parameter to determine

a new response vector Yh. Meanwhile, the residual matrix is recalculated

using the score vector, th, and the loading vector, ph. If more than one

response variable is involved, the process will repeat with the “new” X

matrix, Eh.

Evaluation of the model can be performed using standard statistical

methods. Plots of scores from the input (th) and response (uh) matrices allow

assessment of the fit (or regression parameters, bh). Correlations between

input or response factors can be observed by plots of th vs. tj=h, and uh vs.

uj=h. Examples of the correlation plots are given in Fig. 2: t1 vs. u1, and t1
vs. t2. Numerical evaluations are also possible, through calculation of sums

of squares (15), the F-test (16), and the PRESS algorithm (17), where each

set of data in the training set is sequentially replaced followed by a comparison

of the model parameters.

Programming of the PLS analysis was performed using the MAPLE 7

environment for symbolic mathematics (18) and was run on both a PC

(Windows 2000, Windows XP) and an Apple G4 Powerbook (OS 9).

Appendix A contains the MAPLE code used for model development.

RESULTS AND DISCUSSION

The PLS analysis was applied to the characterization data taken at ORNL (3).

The X and Y matrices are given in (Table 1), showing which variables were

chosen for the training data set before transformation to mean-centered and

variance-scaled. Table 2 gives the loading and weight matrices derived

from PLS analysis, as well as the regression coefficients for each of the

resulting four factors. The model was then used to predict solubility as a

function of the variables characterized for the produced water/crude oil

contacts carried out earlier at ORNL. Results of the calculation are

presented in the graphs shown in (Figs. 3–5) for pH, temperature, and

salinity, respectively. The model predictions are shown as a dashed line on

each graph. Also included are the experimental data for total extractable

material according to EPA methodology (19).

In agreement with the experimental results, trends were observed with pH

and temperature (Figs. 3 and 4), respectively. Salinity gave a poor correlation

although a slight decrease in solubility was seen with both the total extractable

material and the polar fraction (Fig. 5). As expected, a slight increase in solu-

bility was observed in the organic fraction as a function of temperature. The

trend in solubility with applied pressure was also explored using the PLS

method. Because essentially no trends could be derived for the model, the

results from this analysis are not presented in this paper. The solubility data

used for the training set did not show a pressure dependence because the oil

samples used in the experiments on which the PLS model was based were
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degassed before they were shipped to Oak Ridge National Laboratory

(ORNL). Only organics with very low ambient vapor pressures were sampled.

Predictions for solubility as a function of pH are presented in Fig. 3 as the

dashed straight line. The solid line is a pseudo-titration curve arising from

Figure 2. Examples of plots showing correlations between score eigenvectors. A:

Regression between predictor and response variables. B: Correlation between first

two orthogonal predictor factors.
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Table 1a. Input variables for construction of X matrix

Temperature (8C) pH [Cl2] (mg L21) Pressure (bar)

Volume ratio

H2O : (H2Oþ oil)

25 7.00 40,600 1.0 0.80

25 9.03 65,000 1.0 0.80

25 5.98 65,000 1.0 0.80

25 7.00 65,000 1.0 0.67

25 4.73 65,000 1.0 0.80

75 7.00 65,000 1.0 0.80

25 7.00 114,500 1.0 0.80

25 7.00 65,000 1.0 0.80

50 7.00 65,000 1.0 0.80

25 8.09 65,000 1.0 0.80

25 7.00 65,000 1.0 0.50

25 7.00 65,000 1.0 0.20

25 7.00 65,000 6.9 0.80

25 7.00 65,000 17.0 0.80

25 7.00 65,000 29.3 0.80

25 7.00 65,000 1.0 0.80

Table 1b. Response variables (mg . L21) for construction of Y matrix

Total extractable

material

Aliphatic

compounds

Aromatic

compounds

Polar

compounds

12.0 0.066 0.030 4.60

28.6 0.066 0.280 6.94

11.7 0.005 0.040 5.30

11.6 0.060 0.030 6.94

11.9 0.039 0.070 3.10

24.8 0.066 0.330 12.6

14.5 0.253 0.050 6.10

21.0 0.016 0.110 2.35

21.9 0.216 0.080 6.70

23.5 0.010 0.110 27.9

30.6 0.050 0.305 5.80

30.0 0.051 0.240 6.94

47.5 0.103 0.313 3.43

6.1 0.015 0.024 6.25

4.1 0.020 0.090 2.08

3.9 0.016 0.166 4.07
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Table 2. Calculated loading, and weight matrices and regression coefficients

p

0.473 20.152 0.096 0.684

0.567 0.200 0.533 0.047

0.145 20.869 20.225 20.020

20.575 0.085 0.130 0.728

20.319 20.416 0.800 0.023

q

0.545 0.235 20.316 20.312

0.363 20.919 20.237 0.177

0.582 0.316 20.298 0.933

0.483 0.025 0.869 20.043

w

0.496 20.126 20.036 0.646

0.615 0.206 0.534 0.087

0.170 20.886 20.240 0.006

20.490 0.093 20.034 0.762

20.342 20.387 0.837 0.005

b

0.906 0.641 0.278 0.245

Figure 3. Predicted solubility as a function of pH.
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Figure 4. Solubility (mg/L) as a function of temperature (8C). Data for total extrac-

table material (squares) and polar organics (triangles) are superimposed on PLS predic-

tions of solubility. A slight increase in solubility was observed over the temperature

range 25–758C.

Figure 5. Solubility (mg/L) as a function of chloride ion concentration (mg/L). Data

for total extractable material (squares) and polar organics (triangles) are superimposed

on PLS predictions of solubility. In these experiments, the concentrations of aromatic

and aliphatic compounds were at or below the detection limit.
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thermodynamic calculations on a produced water brine–hydrocarbon system

(20). Although the statistical model does not reproduce the “s”-shaped curve

seen in the thermodynamic model, the analysis was performed without any

assumptions concerning the chemistry of the water or the oil. The thermodyn-

amic model, however, required the input of mole fractions of specific

compounds into the system, and the phase behavior was calculated based on

these predetermined variables. Use of a more sophisticated input variable in

the statistical model, such as degree of dissociation rather than pH, should

give results that more closely reproduce the pseudo-titration curve seen in

the data. Unlike a thermodynamic formulation, however, a statistical model

cannot be used to calculate physical properties a priori. For instance, differen-

tiation of the Gibbs free energy with respect to solute mole fraction will give

the upper and lower consulate temperatures of a mixture, but a statistical

model gives no such insight into phase separation behavior.

CONCLUSIONS

Based on partial least squares analysis, a statistical model was constructed

based on data for organic contamination of produced water. When used for

predictions, the PLS model successfully reproduced trends in agreement

with the data, showing an increase in solubility with pH and with temperature.

The advantage of the PLS model is that field data can be easily incorporated

into the model. For this reason, it will likely be the favored approach for

implementation outside the laboratory. The usefulness of the model will be

improved by eliminating apparent weaknesses in the model, such as the impo-

sition of a linear pH dependence where a nonlinear trend was observed in the

data. In PLS, this can be achieved by careful selection of predictor variables

that incorporate nonlinear effects, such as fraction dissociated rather than

pH. Refinements such as these will require incorporation of a larger and

more representative data set in model development.

APPENDIX A

Maple 7 Program for Partial Least-Squares Applied to Produced Water Data

Joanna McFarlane August 29, 2003

Introduction

The object is to build a model that predicts an outcome, Y, based on a

predictor, X. This program was developed following the NIPALS algorithm

outlined in Geladi, P. and Kowalski, B.R., “Partial Least-Squares Regression:

A Tutorial,” Analytica Chimica Acta 185, 1–17 (1986).
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Tested with data from Geladi, P. and Kowalski, B.R., “An Example of 2-Block

Predictive Partial Least-Squares Regression with Simulated Data”, Analytica

Chimica Acta 185, 19–32 (1986).

. restart:with(stats):with(linalg):with(plots):

Defining the Data

The training data—or that used to develop the model—is typed or read into the

program. It is converted to “mean-centred” and “variance-scaled” form. In this

case, 9 separate samples (or objects) were used for model development. The X

data are the measured variables (predictors) and the Y data are the concen-

trations (outcomes or responses).

.

X: ¼ [[25,7,40638,1,0.8],[25,9.03,65000,1,0.8],[25,5.98,65000,1,0.8],

[25,7,65000,1,0.67],[25,4.73,65000,1,0.8],[75,7,65000,1,0.8],[25,7,

114500,1,0.8],[25,7,65000,1,0.8],[50,7,65000,1,0.8],[25,8.09,65000,1,0.8],

[25,7,65000,1,0.5],[25,7,65000,1,0.2],[25,7,65000,6.9,0.8],[25,7,65000,17,

0.8],[25,7,65000,29.3,0.8],[25,7,65000,1,0.8]]:array(X);

Y: ¼ [[12,0.066,0.03,4.6],[28.6,.066,0.28,6.94],[11.7,0.005,0.04,5.3],[11.6,

0.062,0.03,6.94],[11.9,0.039,0.07,3.1],[24.8,.066,0.33,12.6],[14.5,0.253,

0.05,6.1],[21,0.016,0.11,2.35],[21.9,0.216,0.08,6.7],[23.5,0.01,0.11,27.9],

[30.6,0.05,0.305,5.8],[30,0.051,0.24,6.94],[47.5,0.103,0.313,3.43],[6.1,

0.015,0.024,6.25],[4.1,0.02,0.09,2.08],[3.9,0.016,0.166,4.07]]:

array(Y);

num_samples: ¼ rowdim(array(X));

num_ind_var: ¼ coldim(array(X));

num_dep_var: ¼ coldim(array(Y));

Procedures from J.A.Rafter, M.L.Abell and J.P.Braselton— “Statistics with

Maple,” Academic Press, Amsterdam, 2003.

. Columns: ¼ proc(data::list,cols::list)

if nops(cols) ¼ 1 then

[seq(seq(data[i,j],j ¼ cols),i ¼ 1.nops(data))];

else

[seq([seq(data[i,j],j ¼ cols)],i ¼ 1.nops(data))];fi;

end:

. ColumnToList: ¼ proc(data::list,cols::list)

local a;
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if nops(cols) ¼ 1 then

if type(cols[],range) then

a: ¼ [seq(seq(data[i,j],i ¼ 1.nops(data)),j ¼ cols)];

convert(linalg[transpose](a),listlist);

else

[seq(seq(data[i,j],i ¼ 1.nops(data)),j ¼ cols)];

fi;

else

[seq([seq(data[i,j],i ¼ 1.nops(data))],j ¼ cols)];

fi;

end:

Conversion of the data to be mean-centered and variance-scaled

. s: ¼ ‘s’:X1: ¼ []:

for i from 1 to num_ind_var do s: ¼ Columns(X,[i]);

s1: ¼ describe[mean](s);

s2: ¼ describe[standarddeviation[1]](s);

X1: ¼ [op(X1),(evalf(map(x 2 . (x 2 s1)/s2,s)))];

od:

X2: ¼ ColumnToList(X1,[1.num_samples]):

E: ¼ array(X2);

s: ¼ ‘s’:Y1: ¼ []:

for i from 1 to num_dep_var do

s: ¼ Columns(Y,[i]);

s1: ¼ describe[mean](s);

s2: ¼ describe[standarddeviation[1]](s);

Y1: ¼ [op(Y1),(evalf(map(x 2 . (x 2 s1)/s2,s)))];

od:

Y2: ¼ ColumnToList(Y1,[1.num_samples]):

F: ¼ array(Y2);

Model Building

Initialization

. check: ¼ 1:tstart: ¼ ColumnToList(X2,[1]);

ustart: ¼ ColumnToList(Y2,[1]);Xm: ¼ matrix(X2):Ym: ¼ matrix(Y2):

pm: ¼ matrix(5,1,[1,1,1,1,1]):qm: ¼ matrix(4,1,[1,1,1,1]):

wm: ¼ matrix(5,1,[1,1,1,1,1]):

tm: ¼ matrix(16,1,[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]):
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um: ¼ matrix(16,1,[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]):

bm: ¼ []:j: ¼ ‘j’:

. for j from 1 to num_dep_var do

while check . 0.1 do

X block

u_ip: ¼ 1/innerprod(ustart,ustart);

w: ¼ multiply(ustart,Xm);

wold: ¼ scalarmul(w,u_ip);

worm: ¼ 1/norm(wold,2);

wnew: ¼ scalarmul(wold,worm);

w_ip: ¼ 1/innerprod(wnew,wnew);

t1: ¼ multiply(Xm,wnew);

t2: ¼ scalarmul(t1,w_ip);

Y block

t_ip: ¼ 1/innerprod(t2,t2);

q: ¼ multiply(t2,Ym);

qold: ¼ scalarmul(q,t_ip);

qorm: ¼ 1/norm(qold,2);

qnew: ¼ scalarmul(qold,qorm);

q_ip: ¼ 1/innerprod(qnew,qnew);

u1: ¼ multiply(Ym,qnew);

u2: ¼ scalarmul(u1,q_ip);

Check convergence

check: ¼ norm(t2 2 tstart);

ustart: ¼ u2;tstart: ¼ convert(t2,list);

od;

Calculate X-loadings and rescale scores and weights

print(“�����CONVERGENCE��������CONVERGENCE������);

t_ip: ¼ 1/innerprod(t2,t2);

p: ¼ multiply(t2,Xm);

pold: ¼ scalarmul(p,t_ip):

porm: ¼ 1/norm(pold,2):

pnew: ¼ scalarmul(pold,porm);

tnew: ¼ scalarmul(t2,1/(porm));

wnew: ¼ scalarmul(wnew,1/(porm));

pm: ¼ concat(pm,pnew):tm: ¼ concat(tm,tnew):

wm: ¼ concat(wm,wnew):qm: ¼ concat(qm,qnew):

um: ¼ concat(um,u2):
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Calculation of regression coefficient

b: ¼ multiply(u2,t2)�t_ip;bm: ¼ [op(bm),b]:

Calculation of residual matrices

Xdiff: ¼ multiply(tnew,transpose(pnew)):

Xm2: ¼ matadd(Xm,Xdiff,1, 2 1):Xm: ¼ matrix(Xm2);

Ydiff: ¼ multiply(tnew,transpose(qnew)):

Ym2: ¼ matadd(Ym,Ydiff,1, 2 b):Ym: ¼ matrix(Ym2);

Check for convergence. Recalculated u for computation, Need to multiply by

21 to reproduce results in paper.

if (j , num_dep_var) then ustart: ¼ col(Ym,jþ 1);

ustart: ¼ scalarmul(ustart, 2 1);

check: ¼ 1:fi;

od:

Output files (loadings p, q and weights w are used for prediction, bare

regression coefficients, scores t and u are used for assessment).

.pm: ¼ delcols(pm,1.1);qm: ¼ delcols(qm,1.1);tm: ¼ delcols(tm,1.1);

wm: ¼ delcols(wm,1.1);um: ¼ delcols(um,1.1);

Model Testing

Sum of Squares, Plots

Sum of squares are first calculated for samples, and then calculated for each

column of the X matrix and Y matrix to show the degree of minimization

of the residuals. If the sum of squares is large for a particular factor, this

means that it did not play a great role in the model as it was not well

minimized during the computation. The overall sum of squares for X and Y

show how well the model converged for the X and Y data respectively.

. Xm3: ¼ convert(Xm,listlist):SSx_rows: ¼ 0:i: ¼ ‘i’:

. for i from 1 to num_samples do

sum_squares_sample[i]: ¼ describe[sumdata[2]](Xm3[i]);

SSx_rows: ¼ SSx_rowsþ sum_squares_sample[i]:

od;

. i: ¼ ‘i’:SSx_cols: ¼ 0:

. for i from 1 to num_ind_var do

sum_squares_list: ¼ convert(col(Xm,i),‘list’):
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sum_squares_x[i]: ¼ describe[sumdata[2]](sum_squares_list);

SSx_cols: ¼ SSx_colsþ sum_squares_x[i]:
od;

. i: ¼ ‘i’:SSy: ¼ 0:

. for i from 1 to num_dep_var do

sum_squares_list: ¼ convert(col(Ym,i),‘list’):

sum_squares_y[i]: ¼ describe[sumdata[2]](sum_squares_list);

SSy: ¼ SSyþ sum_squares_y[i];
od;

Plots are a valuable tool to visualize the goodness of fit. Regression plots of y

versus x give an idea of how much the response variable depends onthe input

variable. Mapping of t scores indicates correlations between predictor

variables, u scores indicates correlations between response variables.

. i: ¼ ‘i’:j: ¼ ‘j’:

. for i from 1 to (num_dep_var 2 1) do

t1plot: ¼ col(tm,i):ts1: ¼ cat(“t”,i):

t2plot: ¼ col(tm,iþ 1):ts2: ¼ cat(“t”,iþ 1):

set1: ¼ [seq([t1plot[j],t2plot[j]],j ¼ 1.num_samples)]:

Tplot: ¼ plot(set1, 2 5.5, 2 5.5, style ¼ point,symbol ¼ box,

axes ¼ boxed, color ¼ black, labels ¼ [ts1,ts2]):Tplot;

u1plot: ¼ col(um,i):us1: ¼ cat(“u”,i):

u2plot: ¼ col(um,iþ 1):us2: ¼ cat(“u”,iþ 1):

set2: ¼ [seq([u1plot[i],u2plot[i]],i ¼ 1.num_samples)]:

Uplot: ¼ plot(set1, 2 5.5, 2 5.5, style ¼ point, symbol ¼ box,

axes ¼ boxed, color ¼ black,labels ¼ [us1,us2]): Uplot;
od;

Plots of t versus u gives an idea of how good the regression is.

. i: ¼ ‘i’:j: ¼ ‘j’:

. for i from 1 to num_dep_var do

t1plot: ¼ col(tm,i):ts1: ¼ cat(“t”,i):

u1plot: ¼ col(um,i):us1: ¼ cat(“u”,i):

set1: ¼ [seq([t1plot[j],u1plot[j]],j ¼ 1.num_samples)]:

Tplot: ¼ plot(set1, 2 5.5, 2 5.5, style ¼ point, symbol ¼ box,

axes ¼ boxed,color ¼ black,labels ¼ [ts1,us1]):Tplot;

od;

Prediction

In this section, one can calculate a new Y matrix, given an input X matrix. In

this example, there is a single X vector. The input data is scaled according to

the mean and variance calculated in model development.
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. XP: ¼ [25,7,65000,1,.6]:

Changing input values to mean-centred, variance-scaled values.

. s: ¼ ‘s’:XP1: ¼ []:

. for i from 1 to num_ind_var do

s: ¼ Columns(X,[i]);

s1: ¼ describe[mean](s);

s2: ¼ describe[standarddeviation[1]](s);

XP1: ¼ [op(XP1),(evalf(map(x 2 . (x 2 s1)/s2,XP[i])))];

od:

. XP1;

Decomposing the X block into score matrix (vector) t, using weights matrix w.

. TP: ¼ multiply(XP1,wm);TP1: ¼ multiply(TP,transpose(pm));

. XP2: ¼ matadd(XP1,TP1,1, 2 1);

Building up Y block using u scores

. UP: ¼ multiply(TP,transpose(qm));

. i: ¼ ‘i’:YP: ¼ [i]:

. for i from 1 to num_dep_var do

YP: ¼ [op(YP),scalarmul(UP,bm[i])[i]];

od:

. YP: ¼ [op(2.num_dep_varþ 1,YP)];

Regenerate “physical” concentrations.

. s: ¼ ‘s’:YP1: ¼ []:

. for i from 1 to num_dep_var do

s: ¼ Columns(Y,[i]);

s1: ¼ describe[mean](s);

s2: ¼ describe[standarddeviation[1]](s);

YP1: ¼ [op(YP1),(evalf(map(x 2 . s1þ (s2�x),YP[i])))];

od:

YP1;
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